Abstract

Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment.

Highlights

  • Coastal saltmarsh sediments represent a highly productive environment, which are predominantly anaerobic and characterized by a high rate of carbon cycling [1]

  • Methanogenesis from choline involved TMA as a key intermediate in saltmarsh sediments We have hypothesized that methanogenesis from choline in saltmarsh sediments is a two-step process, involving the bacterial degradation of choline to TMA and subsequent methane formation from TMA by methylotrophic methanogens

  • To uncover the microbial community response to choline amendment and to uncover the microbes involved in choline transformation, we sequenced the 16S rRNA genes from both the light and heavy fractions of the DNA-SIP microcosms over the time course experiment

Read more

Summary

Introduction

Coastal saltmarsh sediments represent a highly productive environment, which are predominantly anaerobic and characterized by a high rate of carbon cycling [1]. These sediments represent a significant source of natural methane emissions, resulting from the degradation of organic matter, facilitated by the microorganisms inhabiting these sediments. Quaternary amines are precursors of TMA and are ubiquitous in marine microbes, where they act as osmolytes and essential cellular components. In marine and coastal systems, cycling of quaternary amines, such as choline, leads to atmospheric fluxes of methylated amines and methane, both of which are important climate-active trace gases [2, 7, 8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call