Abstract

The presence of marine pollutants such as marine plastics has increased significantly over the last decades and poses a major environmental problem, in both the coastal and offshore area. Marine pollutants are transported, mixed and diffused in the ocean, which means the understanding and modelling of marine transport is key for mitigation purposes (Moulton et al., 2022). Additional to large scale and planetary currents that play a major role in marine transport, free surface waves, internal gravity waves in density stratified fluids and the Coriolis force due to the rotation of the Earth are also fundamental drivers of transport that need to be accounted for. The fundamental fluid mechanics processes associated with these are often not resolved in large-scale models, but are instead included in a parametrised form. However, some fundamental processes associated with wave-induced currents (e.g., Stokes drift) in rotating, density-stratified fluids with a free surface remain unclear and untested. In addition, parametrisation for different environments, forcings and time scales must be developed and tested before being implemented into models for them to reliably predict transport, accumulation and storage of marine pollutants. For this purpose, the Delta Transport Processes Laboratory (DTPLab) is being developed at TUDelft Hydraulic Engineering Laboratory. This laboratory pioneers the combined experimental study of surface waves, density stratification and Coriolis forces in a single laboratory. The DTPLab was designed with a multi- users and purposes vision, with interchangeable facilities and state-of-the-art measurement devices. This paper presents the DTPLab facilities (under construction) and equipment that make this laboratory unique in the world, and describes, as an example of what is feasible, a novel experiment that will be performed in this lab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.