Abstract

It has been shown previously that the proton-pumping activity of bacteriorhodopsin from Halobacterium salinarium can transmit an attractant signal to the bacterial flagella upon an increase in light intensity over a wide range of wavelengths. Here, we studied the effect of blue light on phototactic responses by the mutant strain Pho8l-B4, which lacks both sensory rhodopsins but has the ability to synthesize bacteriorhodopsin. Under conditions in which bacteriorhodopsin was largely accumulated as the M412 bacteriorhodopsin photocycle intermediate, halobacterial cells responded to blue light as a repellent. This response was pronounced when the membrane electric potential level was high in the presence of arginine, active oxygen consumption, or high-background long-wavelength light intensity but was inhibited by an uncoupler of oxidative phosphorylation (carbonyl cyanide 3-chlorophenylhydrazone) and was inverted in a background of low long-wavelength light intensity. The response to changes in the intensity of blue light under high background light was asymmetric, since removal of blue light did not produce an expected suppression of reversals. Addition of ammonium acetate, which is known to reduce the pH gradient changes across the membrane, did not inhibit the repellent effect of blue light, while the discharge of the membrane electric potential by tetraphenylphosphonium ions inhibited this sensory reaction. We conclude that the primary signal from bacteriorhodopsin to the sensory pathway involves changes in membrane potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.