Abstract

An overview on all possible helix types in oligomers of delta-amino acids (delta-peptides) and their stabilities is given on the basis of a systematic conformational analysis employing various methods of ab initio MO theory (HF/6-31G*, B3LYP/6-31G*, PCM//HF/6-31G*). A wide variety of novel helical structures with hydrogen-bonded pseudocycles of different size are predicted. Since a delta-amino acid constituent may replace a dipeptide unit in alpha-peptides, there are close relationships between the secondary structures of peptides with delta-amino acid residues and typical secondary structures of alpha-peptides. However, the preference of gauche conformations at the central C(beta)-C(gamma) bonds of delta-amino acids, which correspond to the peptide linkages in alpha-peptides, over staggered ones makes completely novel structure alternatives for helices and turns more probable. The peculiarities of beta-turn formation by sugar amino acids derived from delta-amino acids are compared with the turn formation in delta-amino acid residues and in alpha-peptides. The considerable potential of secondary structure formation in delta-peptides and single delta-amino acid constituents predicted by ab initio MO theory may stimulate experimental work in the field of peptide and foldamer design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call