Abstract
Delta opioid receptor (DOR) activation protects the adult mammalian brain during oxygen-glucose deprivation (OGD), but it is not known whether neonatal spinal motor circuits are also protected. Also, it is unclear whether the timing of spinal DOR activation relative to spinal OGD is important for neuroprotection. Thus, a split-bath in vitro neonatal rat brainstem/spinal cord preparation was used to record spontaneous respiratory motor output from cervical (C4-C5) and thoracic (T5-T6) ventral spinal roots while exposing only the spinal cord to OGD solution (0 mM glucose, bubbled with 95% N(2)/5% CO(2)) or DOR agonist drugs (DADLE, DPDPE). Spinal OGD solution application caused respiratory motor output frequency and amplitude to decrease until all activity was abolished (i.e. end-point times) after 25.9±1.4 min (cervical) and 25.2±1.4 min (thoracic). Spinal DOR activation via DPDPE (1.0 μM) prior-to and during spinal OGD increased cervical and thoracic end-point times to 35-48 min. Spinal DADLE or DPDPE (1.0 μM) application 15 min following spinal OGD onset increased cervical and thoracic end-point times to 36-45 min. Brief spinal DPDPE (1.0 μM) application for 10 min at 25 min before spinal OGD onset increased cervical and thoracic end-point times to 41-46 min. Overall, the selective DOR agonist, DPDPE, was more effective at increasing end-point times than DADLE. Naltrindole (DOR antagonist; 10 μM) pretreatment blocked DPDPE-dependent increase in end-point times, suggesting that DOR activation was required. Spinal naloxone (1.0 μM) application before and during spinal OGD also increased end-point times to 31-33 min, but end-point times were not altered by Mu opioid receptor (MOR) activation or DOR activation/MOR blockade, indicating that there are complex interactions between OGD and opioid signaling pathways. These data suggest DOR activation before, during, and after spinal OGD protects central motor networks and may provide neuroprotection during unpredictable perinatal ischemic events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.