Abstract

Option hedging is critical in financial risk management. The traditional methods to determine the hedging position require assumptions of a frictionless market and continuous hedging. In this article, these two assumptions are removed, and a hedging strategy based on the reinforcement learning technique is proposed. This new strategy maximizes the expectation of the present value of accounting and realized profits of the hedging portfolio while limiting the sensitivity of the hedging position to changes in the underlying asset. The performance of this method is tested on option trading data (from 2004 to 2020) for the Standard and Poor’s (S&P) 500, S&P 100, and Dow Jones Industrial Average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.