Abstract
With an oscillator basis, the nuclear Hamiltonian is defined in a nocore model space. It consists of an effective nucleonnucleon interaction obtained with Brueckner theory from the Reid soft core interaction, a Coulomb potential, nucleondelta transition potentials, and deltadelta interaction terms. By performing spherical HartreeFock (SHF) calculations with the realistic baryon Hamiltonian, the ground state properties of 40Ca are studied. For an estimate of how the delta degree of freedom is excited, SHF calculations are performed with a radial constraint to compress the nucleus. The delta degree of freedom is gradually populated as the nucleus is compressed. The number of Δ’s is decreased by increasing model space. Large amount of the compressive energy is delivered to create massive Δ in the nucleus. There is a significant reduction in the static compression modulus for RSC static compressions which is reduced by including the Δ excitations. The static compression modulus is decreased significantly by en larging the nucleon model space. The results suggest that inclusion of the delta in the nuclear dynamics could head to a significant softening of the nuclear equation of state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.