Abstract

Non-adiabatic vibrational/electronic (vibronic) interactions in photosynthetic pigment/protein complexes (PPCs) have recently attracted considerable interest as a potential source for long-lived dynamic coherence and optimized light harvesting. The analysis of such effects is limited, however, by the complexity of the vibrational spectrum of biological pigments such as chlorophyll (Chl) molecules, which often makes numerical calculations prohibitively expensive and complicates the interpretation of experimental spectroscopic data. This work contributes to both challenges by using numerically exact computational methods to systematically examine vibronic mixing effects in the low-temperature fluorescence spectra of a Chl dimer possessing a full complement of local vibrations, using parameters extracted from experimental data. The results highlight the varying roles local vibrations can play in energy-transfer dynamics, both enhancing delocalization through vibronic resonance and, conversely, inducing dynamic localization by acting as a "self-bath" for local electronic transitions. In the specific context of line-narrowed fluorescence, the results indicate that, while low-frequency features are strongly suppressed by delocalization, high-frequency modes are likely to be dynamically localized in the parameter regime relevant to most photosynthetic complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call