Abstract

Correlation effects and phase transitions are central issues in current studies on disordered systems. In this paper, we study the electronic properties of a disordered double chain with long-range intrachain correlation and short-range interchain correlation. Based on detailed numerical calculations, finite size scaling analysis and empirical analytical calculations, we obtain a phase diagram containing rich physics due to the interplay among the disorder, short-range and long-range correlations. Besides the long-range correlation induced localization–delocalization transitions, we find both first-order and second-order quantum phase transitions on changing the short-range correlation. Interestingly, the localization may be suppressed by increasing the disorder strength in some parameter regime and the ‘anti-correlation’ leads to the most delocalized state. Our studies shine some light on the mechanism of the charge transport in DNA molecules, where both types of correlated disorders are present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call