Abstract
We prove that eigenfunctions of the Laplacian on a compact hyperbolic surface delocalise in terms of a geometric parameter dependent upon the number of short closed geodesics on the surface. In particular, we show that an L2 normalised eigenfunction restricted to a measurable subset of the surface has squared L2-norm ε > 0, only if the set has a relatively large size—exponential in the geometric parameter. For random surfaces with respect to the Weil—Petersson probability measure, we then show, with high probability as g → ∞, that the size of the set must be at least the genus of the surface to some power dependent upon the eigenvalue and ε.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.