Abstract

In recent years, immune cell-based cancer therapeutics have been utilized broadly in the clinic. Through advances in cellular engineering, chimeric antigen receptor (CAR) T-cell therapies have demonstrated substantial success in treating hematological tumors and have become the most prominent cell-based therapy with three commercialized products in the market. However, T-cell-based immunotherapies have certain limitations, including a restriction to autologous cell sources to avoid severe side-effects caused by human leukocyte antigen (HLA) mismatch. This necessity for personalized treatment inevitably results in tremendous manufacturing and time costs, reducing accessibility for many patients. As an alternative strategy, natural killer (NK) cells have emerged as potential candidates for improved cell-based immunotherapies. NK cells are capable of killing cancer cells directly without requiring HLA matching. Furthermore, NK cell-based therapies can use various allogeneic cell sources, allowing for the possibility of "off-the-shelf" immunotherapies with reduced side-effects and shortened manufacturing times. Here we provide an overview of the use of NK cells in cancer immunotherapy, their current status in clinical trials, as well as the design and implementation of delivery technologies-including viral, non-viral, and nanoparticle-based approaches-for engineering NK cell-based immunotherapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call