Abstract

Pectin-Zn-alginate gel particles from callus culture pectin with increased linearity and decreased rhamnogalacturonan I branching and degree of methylesterification had a higher gel strength and encapsulation capacity. An increase of the alginate concentration led to an increase in the particle gel strength. The grape seed extract (GSE) loaded and empty particles swelled slightly in the simulated gastric fluid (SGF) and gradually in the intestinal (SIF) fluid. The swelling degrees of the GSE-loaded and empty particles in the simulated colonic fluids (SCF) were decreased in the range SCF-7.0 (pH 7.0 + pectinase) > SCF-5.3 (pH 5.3 + pectinase) > SCF-2.3 (pH 2.3 + pectinase). The FTIR spectra indicated that GSE was embedded in the composite particles. Negligible leakage of GSE in SGF was shown. The increase in GSE release in SIF was due to the decrease in particle gel strength and increased swelling degree. The GSE release in fluids simulating the colon inflammation (SCF-2.3 and SCF-5.3) was similar, and it was lower than that in the SCF-7.0 simulating a healthy colon due to the increased gel strength. The percentage release of GSE increased slightly after exposure to different pH. Pectin-Zn-alginate hydrogel systems may be promising candidates for colon-targeted GSE delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.