Abstract

This study addresses the route scheduling problem for the heterogeneous robotic delivery system (HRDS) that perform delivery tasks in an urban environment. The HRDS comprises two distinct types of vehicles: an unmanned ground vehicle (UGV), which is constrained by road networks, and an unmanned aerial vehicle (UAV), which is capable of traversing terrain but has limitations in terms of energy and payload. The problem is formulated as an optimal route scheduling problem in a road network, where the goal is to find the route with minimum delivery cost and maximum customer satisfaction (CS) enabling the UAV to deliver packages to customers. We propose a new method of route scheduling based on an improved artificial bee colony algorithm (ABC) and the non-dominated sorting genetic algorithm II (NSGA-II) that provides the optimal delivery route. The effectiveness and superiority of the method we proposed are demonstrated by comparison in simulations. Moreover, the physical experiments further validate the practicality of the model and method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.