Abstract

Cardiovascular diseases including atherosclerosis are a major financial and health burden globally. Inflammation associated with atherosclerosis results in the development of plaques that can rupture causing thrombosis, stroke, or death. The most widely used treatment for the removal of atherosclerotic plaques is percutaneous transluminal coronary angioplasty (PTCA) with or without stenting. Although this is a safer and minimally invasive method, restenosis and intimal hyperplasia after interventional procedure remains a major hurdle and more refined approaches are needed. Studies in large animal models such as pigs have facilitated a greater understanding of the underlying mechanisms of the disease and provided novel targets for therapeutic intervention. In pre-clinical studies, viral vector gene therapy has emerged as a promising option for the reduction and/or prevention of restenosis and intimal hyperplasia. Although studies in animal models have generated promising results, clinical trials have yet to prove the clinical efficacy of gene therapy in coronary artery diseases. In this review, we examined and critically reviewed the most recent advances in viral vector gene therapy obtained from studies using porcine model of atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call