Abstract

RNA interference (RNAi) is an evolutionarily conserved process that silences gene expression through double-stranded RNA species in a sequence-specific manner. Small interfering RNAs (siRNAs) can promote sequence-specific degradation and/or translational repression of target RNA by activation of the RNA-induced silencing complex (RISC). Traditionally, silencing in mammalian cells had been achieved by transfection of synthetically derived siRNA duplexes, resulting in transient gene suppression of the target sequence. As the technology was advanced, inhibitory short-hairpin-shaped RNAs (shRNAs) could be produced by transcription from RNA polymerase-III (pol-III)-driven promoters, such as H1, U6, or cytomegalovirus (CMV)-enhanced pol III promoters. Following transcription, the shRNAs are processed by the enzyme Dicer into active siRNA. This approach allows for the continuous production of siRNA within cells using a DNA template and offers increased options for delivery of the pol-III-driven transcriptional units. A number of different viral vectors, as well as plasmid DNAs, have been utilized to deliver shRNA to mammalian cells. Here, the Tc1/mariner DNA transposon Sleeping Beauty (SB) is used as a tool to deliver shRNA-encoding transcriptional units. The SB transposon system uses a "cut-and-paste" mechanism to insert the transposon into random TA dinucleotides within the target genome. The shRNAs are then processed and used for gene knockdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.