Abstract

The efficiency of drugs often hinges on drug carriers. To effectively transport therapeutic plant molecules, drug delivery carriers should be able to carry large doses of therapeutic drugs, enable their sustained release, and maintain their biological activity. Here, graphene oxide (GO) is demonstrated to be a valid carrier for delivering therapeutic plant molecules. Salvianolic acid B (SB), which contains a large number of hydroxyl groups, bound to the carboxyl groups of GO by self-assembly. Silk fibroin (SF) substrates were combined with functionalized GO through the freeze-drying method. SF/GO scaffolds could be loaded with large doses of SB, maintain the biological activity of SB while continuously releasing SB, and significantly promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs). SF/GO/SB also dramatically enhanced endothelial cell (EA-hy9.26) migration and tubulogenesis in vitro. Eight weeks after implantation of SF/GO/SB scaffolds in a rat cranial defect model, the defect area showed more new bone and angiogenesis than that following SF and SF/GO scaffold implantation. Therefore, GO is an effective sustained-release carrier for therapeutic plant molecules, such as SB, which can repair bone defects by promoting osteogenic differentiation and angiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.