Abstract
In this study, a cell penetrating peptide was used as an uptake enhancer for pDNA delivery to the lungs. Polyplexes were prepared between pDNA and CPP. Intracellular delivery of pDNA was assessed in both alveolar (A549) and bronchial (Calu-3) epithelial cells. Aerosol delivery was investigated using a mesh nebulizer. Efficient intracellular delivery of pDNA occurs in both A549 and Calu-3 cells when delivered as polyplexes. Protection against nucleases and endosomal escape mechanism occurs when pDNA is formulated within the polyplexes. For aerosol delivery, 1% (w/v) mannitol was able to protect naked DNA structure during nebulization with a significant increase in fine particle fraction (particles <5μm). The structure of polyplexes when delivered via a mesh nebulizer using 1% (w/v) mannitol could partially withstand the shear forces involved in aerosolization. Although some loss in functionality occurred after nebulization, membrane-associated fluorescence was observed in A549 cells. In Calu-3 cells mucus entrapment was a limiting factor for polyplex delivery. The presence of CPP is essential for efficient intracellular delivery of pDNA. The polyplexes can be delivered to lung epithelial cells using mesh nebulizer. The use of different excipients is essential for further optimization of these delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.