Abstract
Deficiency or altered composition of stratum corneum (SC) lipids such as ceramides (CERs), causing skin barrier dysfunction and skin dryness, have been associated with skin diseases such as atopic dermatitis and psoriasis, and ageing. Replenishing the depleted native CERs with exogenous CERs has also been shown to have beneficial effects in restoring the skin barrier. Phyto-derived CERs such as oat CERs were shown to be potential for skin barrier reinforcement. To effect this, however, the oat CERs should overcome the SC barrier and delivered deep into the lipid matrix using the various novel formulations. In an attempt to demonstrate the potential use of oat CERs, lecithin-based microemulsions (MEs) and starch-based nanoparticles (NPs) were formulated and characterized. Besides, ME gel and NP gel were also prepared using Carbopol®980 as a gelling agent. The in vitro release and penetration (using artificial four-layer membrane system) and ex vivo permeation (using excised human skin) of oat CERs from the various formulations were investigated. The results revealed ME enhanced the in vitro release and penetration oat CERs compared to the other formulations. On the other hand, the NPs retarded the release of oat CERs and small quantities of oat CERs incorporated into NP gel penetrated into the deeper layers of the multilayer membranes. The penetration-enhancing effect of ME was also observed in the ex vivo permeation studies where significant quantities of oat CERs were found in the acceptor compartment. Compared to the ME, the ME gel exhibited reduced depth and extent of oat CERs permeation. As compared to NP gel, ME gel enhanced the degree of permeation of oat CERs into the deeper layer of the skin. Generally the gel formulations were effective in concentrating oat CERs in the SC where they are needed to be.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.