Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant human tumors worldwide, but no effective therapeutic options are currently available. The cancer stem cell (CSC) has proven to play a central role in the development, metastasis, and recurrence of HCC. In this study, we report a dual functional mitogen-activated protein kinase inhibitor (U0126)-based therapy for treating both bulk HCC and HCC CSCs, using poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles as the drug carrier. It is demonstrated that nanoparticle encapsulation enhanced the cell uptake of U0126 in HCC CSCs and that enhanced endocytosis lead to augmented cytotoxicity of U0126 in HCC CSCs. Moreover, the nanoparticle encapsulation increased the inhibition of self-renewal capability, prolonged the circulation time, and increased the tumor accumulation of U0126 when compared with the use of the free inhibitor. The systemic delivery of U0126 remarkably enhanced the suppression of tumor development with decreased CSCs in the HepG2 xenograft simultaneously with reduced systemic toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.