Abstract

Nanoparticles made from natural proteins and polysaccharides are green, biodegradable, and sustainable. In this study, soybean protein isolate (SPI) and soybean soluble polysaccharide (SSPS) were employed as delivery vehicles for hyperoside (HYP) to explore the mechanism of the formation of complexes and evaluate the performance of this mechanism at different pH values. The structures of SPI-SSPS-HYP complexes were studied by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the stability was evaluated based on free radical scavenging ability, loading rate, and simulated release. The results showed that nanoparticles were subjected to non-covalent electrostatic complexation, which was affected mainly by electrostatic, hydrogen bond, and hydrophobic interactions, and the optimal encapsulation efficiency was 85.56% at pH 3.5. Encapsulated HYP retained its high antioxidant capacity. This study provides a new strategy for developing a biodegradable nanocarrier with superior encapsulation properties, enhancing the application range of HYP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.