Abstract

microRNSa (miRNAs), small noncoding RNAs (21-25 bases) that are not translated into proteins, inhibit lots of target messenger RNAs (mRNAs) by destabilizing and inhibiting their translation in various kidney diseases. Therefore, alternation of miRNA expression by exogenous artificially synthesized miRNA mimics is a potentially useful treatment option for inhibiting the development of many kidney diseases. However, because serum RNAase immediately degrades systematically administered exogenous miRNA mimics in vivo, delivery of miRNA to the kidney remains a challenge. Therefore, vectors that can protect exogenous miRNA mimics from degradation by RNAase and significantly deliver them to the kidney are necessary. Many studies have used viral vectors to deliver exogenous miRNA mimics or inhibitors to the kidney. However, viral vectors may cause an interferon response and/or genetic instability. Therefore, the development of viral vectors is also a hurdle for the clinical use of exogenous miRNA mimics or inhibitors. To overcome these concerns regarding viral vectors, we developed a nonviral vector method to deliver miRNA mimics to the kidney using tail vein injection of polyethylenimine nanoparticles (PEI-NPs), which led to significant overexpression of target miRNAs in several mouse models of kidney disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.