Abstract
Curcumin, a dietary polyphenol isolated from turmeric, is a potent phytochemical possessing intrinsic anticancer activities against various cancer types including prostate cancer. However, low water solubility and bioavailability of the compound are major challenges against its medical use. The objective of this study is to evaluate the therapeutic potential of curcumin-loaded emulsome nanoparticular system, i.e. CurcuEmulsomes, for the treatment of androgen dependent LNCaP prostate cancer cell line. The antiproliferative effect of both free curcumin and CurcuEmulsome were investigated comparatively on LNCaP and PNT1A cells. Cell viability data indicates that the inhibition in proliferation of LNCaP cells becomes more effective when curcumin is provided with its emulsome formulation rather than its free form. Corresponding to a therapeutic index of 2.25, Half maximal inhibitory (IC50) and cytotoxic (CC50) concentrations of CurcuEmulsomes for LNCaP and PNT1A cells were estimated as 17.1µM and 38.6µM, respectively. The fluorescence signal of autofluorescence curcumin was preserved within the CurcuEmulsomes at72h after the treatment. Thus, CurcuEmulsomes prolonged biological activity of curcumin. Induced apoptotic cell death and stimulated cell cycle arrest at G2/M phase were attributed to antiproliferative activity of CurcuEmulsomes. Treatment of LNCaP cells with CurcuEmulsomes increased expression of caspase-3 significantly by 11.76-fold, whereas decreased cyclin D1, Bcl-2 and AR expression levels significantly by of 0.18, 0.06 and 0.46-fold, respectively. Presented safety and anticancer activity of CurcuEmulsomes on LNCaP cell line highlights the potential of CurcuEmulsomes to benefit intrinsic anticancer activities of curcumin in androgen dependent prostate cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.