Abstract

Carriers for bone morphogenetic proteins (BMPs) are used to increase retention of these factors at orthopedic treatment sites for a sufficient period of time to allow regenerative tissue forming cells to migrate to the area of injury and to proliferate and differentiate. Carriers can also serve as a matrix for cell infiltration while maintaining the volume in which repair tissue can form. Carriers have to be biocompatible and are often required to be bioresorbable. Carriers also have to be easily, and cost-effectively, manufactured for large-scale production, conveniently sterilized and have appropriate storage requirements and stability. All of these processes have to be approvable by regulatory agencies. The four major categories of BMP carrier materials include natural polymers, inorganic materials, synthetic polymers, composites of these materials. Autograft or allograft carriers have also used. Carrier configurations range from simple depot delivery systems to more complex systems mimicking the extracellular matrix structure and function. Bone regenerative carriers include depot delivery systems for fracture repair, three-dimensional polymer or ceramic composites for segmental repairs and spine fusion and metal or metal/ceramic composites for augmenting implant integration. Tendon/ligament regenerative carriers range from depot delivery systems to three-dimensional carriers that are either randomly oriented or linearly oriented to improve regenerative tissue alignment. Cartilage regenerative systems generally require three-dimensional matrices and often incorporate cells in addition to factors to augment the repair. Alternative BMP delivery systems include viral vectors, genetically altered cells, conjugated factors and small molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call