Abstract

Prostate cancer has become the most frequently occurring cancer and the second leading cause of cancer deaths in men. One novel approach to combat prostate cancer is gene therapy. A replication-deficient recombinant adenoviral vector (AdRSVlacZ) expressing bacterial beta-galactosidase (beta-gal) (lacZ) under the control of the Rous sarcoma virus promoter was used to determine which delivery route was best for the transduction of adenoviral vectors to the prostate. Using a canine model, adenoviral vectors were administered by intravenous, intra-arterial, and intraprostatic (i.p.) injections. After injections, the expression of the lacZ gene was measured in canine prostates as well as in various other organs to determine the distribution of the disseminated adenoviral vector by (a) the percentage of cells expressing lacZ in situ (5-bromo-4-chloro-3-indolyl beta-D-galactoside staining), (b) beta-gal enzymatic activity (colorimetric beta-gal assay), and (c) polymerase chain reaction of genomic DNA using primers specific for the adenoviral genome. An i.p. injection of the adenoviral vector resulted in a greater transduction rate and expression level of lacZ in the prostate than either intravenous or intra-arterial (inferior vesical/prostatic artery) injections. Thus, an i.p. (or intratumoral) injection seems to be the best route to treat local regional prostate cancer by viral-based gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.