Abstract

The effects of delivering GDNF via an adenoviral vector (AdGDNF) 1 week after lesioning dopaminergic neurons in the rat substantia nigra (SN) with 6-hydroxydopamine (6-OHDA) were examined. Rats were unilaterally lesioned by injection of 6-OHDA into the striatum, resulting in progressive degeneration of dopaminergic neurons in the SN. One week later, when substantial damage had already occurred, AdGDNF or a control vector harboring β-galactosidase (AdLacZ) was injected into either the striatum or SN (3.2 × 107 PFU/μl in 2 μl). Rats were examined behaviorally with the amphetamine-induced rotation test and for forelimb use for weight-bearing movements. On day 30 postlesion, the extent of nigrostriatal tract degeneration was determined by injecting a retrograde tracer (FluoroGold) bilaterally into the lesioned striatum. Five days later, rats were sacrificed within 2 h of amphetamine injection to examine amphetamine-induced Fos expression in the striatum, a measure of dopaminergic-dependent function in target neurons. AdGDNF injection in the SN rescued dopaminergic neurons in the SN and increased the number of dopaminergic neurons that maintained a connection to the striatum, compared to rats injected with AdLacZ. Further support that these spared SN cells maintained functional connections to the striatum was evidenced by increased Fos expression in striatal target neurons and a decrease in amphetamine-induced rotation. In contrast to the effects observed in rats injected with AdGDNF in the SN, rats injected with AdGDNF in the striatum did not exhibit significant ameliorative effects. This study demonstrates that experimentally increasing levels of GDNF biosynthesis near the dopaminergic neuronal soma is effective in protecting the survival of these neurons and their function even when therapy is begun after 6-OHDA-induced degeneration has commenced. Thus, GDNF gene therapy may ameliorate the consequences of Parkinson's disease through rescuing compromised dopaminergic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.