Abstract

The major goal of epigenetic therapy is to reverse aberrant promoter hypermethylation and restore normal function of tumor suppressor genes by the use of chromatin-modifying drugs. Decitabine, or 5-aza-2'-deoxycytidine (5-aza-CdR), is a well-characterized drug that is now Food and Drug Administration approved for the treatment of myelodysplastic syndrome. Although 5-aza-CdR is an extremely potent inhibitor of DNA methylation, it is subject to degradation by hydrolytic cleavage and deamination by cytidine deaminase. We show that short oligonucleotides containing a 5-aza-CdR can also inhibit DNA methylation in cancer cells at concentrations comparable with 5-aza-CdR. Detailed studies with S110, a dinucleotide, showed that it works via a mechanism similar to that of 5-aza-CdR after incorporation of its aza-moiety into DNA. Stability of the triazine ring in aqueous solution was not improved in the S110 dinucleotide; however, deamination by cytidine deaminase was dramatically decreased. This is the first demonstration of the use of short oligonucleotides to provide effective delivery and cellular uptake of a nucleotide drug and protection from enzymatic degradation. This approach may pave the way for more stable and potent inhibitors of DNA methylation as well as provide means for improving existing therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.