Abstract

We describe a simple experimental approach for delivering self-assembled monolayers (SAMs) of octadecylphosphonic acid (OPA) on many oxide surfaces using a nonpolar medium with a dielectric constant around 4 (e.g., trichloroethylene). This approach readily results in the formation of full-coverage OPA SAMs on a wide variety of oxide surfaces including cleaved mica, Si wafer, quartz, and aluminum. Especially, the availability of delivering full-coverage OPA SAM on a Si wafer is unique, as no OPA SAMs at all could be formed on a Si wafer when using a polar OPA solution. The reason a nonpolar solvent is superior lies in the very fact that the hydrophilic OPA headgroup tends to escape from the nonpolar solution and is thus enriched at the medium-air interface. It is these OPA headgroups seeking a hydrophilic surface that make possible the well-controlled OPA monolayer on an oxide surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.