Abstract
DNA aptamers have been developed as sensors to detect metabolites with high sensitivity, selectivity, and biocompatibility. While they are effective in sensing important targets in the brain, the lack of methods for their efficient delivery across the blood-brain barrier (BBB) has significantly hindered their applications in brain research. To address this issue, we herein report the development of brain cell-derived exosomes as endogenous BBB delivery vehicles to deliver an ATP-responsive aptamer across the BBB of live mice for noninvasive live brain imaging. We found that the system uses endosome recycling to transfer the sensors between the delivered exosomes and native recycling endosomes, resulting in high delivery efficiencies. Using this system, we observed unique signal distributions for ATP across different brain regions, with significant accumulation in the subiculum and cortex in healthy mice. In an Alzheimer's disease transgenic mouse model, ATP levels decreased in the subiculum and cortex, demonstrating this method's capability to determine metabolite location and relative abundance with high spatial resolution in vivo. Since DNA aptamers have been obtained for many other targets, the method developed in this work can be applied to deliver sensors across the BBB to image a wide range of other brain-related metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.