Abstract

Biomass can be converted into a range of different end-products; and when combined with carbon capture and storage (CCS), these processes can provide negative CO2 emissions. Biomass conversion technologies differ in terms of costs, system efficiency and system value, e.g. services provided, market demand and product price. The aim of this study is to comparatively assess a combination of BECCS pathways to identify the applications which offer the most valuable outcome, i.e. maximum CO2 removal at minimum cost, ensuring that resources of sustainable biomass are utilised efficiently. Three bioenergy conversion pathways are evaluated in this study: (i) pulverised biomass-fired power plants which generate electricity (BECCS), (ii) biomass-fuelled combined heat and power plants (BE-CHP-CCS) which provide both heat and electricity, and (iii) biomass-derived hydrogen production with CCS (BHCCS). The design and optimisation of the BECCS supply chain network is evaluated using the Modelling and Optimisation of Negative Emissions Technology framework for the UK (MONET-UK), which integrates biogeophysical constraints and a wide range of biomass feedstocks. The results show that indigenous sources of biomass in the UK can remove up to 56 MtCO2/yr from the atmosphere without the need to import biomass. Regardless of the pathway, Bio-CCS deployment could materially contribute towards meeting a national CO2 removal target and provide a substantial contribution to a national-scale energy system. Finally, it was more cost-effective to deploy all three technologies (BECCS, BE-CHP-CCS and BHCCS) in combination rather than individually.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call