Abstract

The 5' and 3' ends of the lux mRNA of Vibrio harveyi, which extends over 8 kilobases, have been mapped, and two new genes, luxG and luxH, were identified at the 3' end of the lux operon. Both S1 nuclease and primer extension mapping demonstrated that the start site for the lux mRNA was 26 bases before the initiation codon of the first gene, luxC. The promoter region contained a typical -10 but not a recognizable -35 consensus sequence. By using S1 nuclease mapping the mRNA was found to be induced in a cell density- and arginine-dependent manner. The DNA downstream of the five known V. harveyi lux genes, luxCDABE, was sequenced and found to contain coding regions for two new genes, designated luxG and luxH, followed by a classical rho-independent termination signal for RNA polymerase. luxG codes for a protein of 233 amino acids with a molecular weight of 26,108, and luxH codes for a protein of 230 amino acids with a molecular weight of 25,326. The termination signal is active in vivo as demonstrated by 3' S1 nuclease mapping, confirming that the two genes are part of the V. harveyi lux operon. Comparison of the luxG amino acid sequence with coding regions immediately downstream from luxE in other luminescent bacteria has demonstrated that this gene may be a common component of the luminescent systems in different marine bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call