Abstract

BackgroundThe Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA), and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences.ResultsLipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal structure of one of the GbpA family outliers from H. parasuis. Comparisons thereof with the previously determined structure of GbpA in complex with oxidized glutathione reveals the structural basis for the lack of allocrite binding capacity, thereby explaining the outlier behavior.ConclusionsTaken together, our studies provide for the first time a collective functional look on a novel, Pasteurellaceae-specific, SBP subfamily of glutathione binding proteins, which we now term GbpA proteins. Our studies strongly implicate GbpA family SBPs in the priming step of ABC-transporter-mediated translocation of useful forms of glutathione across the inner membrane, and rule out a general role for GbpA proteins in heme acquisition.

Highlights

  • The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import

  • We found GbpA homologs in 13 different species, all of which belong to the Pasteurellaceae, and more than half of these sequences were predicted lipoproteins by the LipoP 1.0 server http://www.cbs.dtu.dk/services/LipoP/

  • Most DppA proteins homologous to GbpAHi are found within the Pasteurellaceae, strongly suggesting that glutathione-specific GbpA proteins evolved paralogously in the Pasteurellaceae lineage from their canonical DppA dipeptide-binder

Read more

Summary

Introduction

The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP’s. ATP-binding cassette (ABC)-transporters exist in all three kingdoms of life and transport a large variety of substrates across biological membranes. In addition to their well-documented role in solute transport, a diversity of sensory functions have been assigned that part of the functional unit [1]. The physiological relevance of the immobilized versions of SBPs remains largely unaddressed in the literature

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call