Abstract

Phosphorylation is the most prevalent form of regulation in cells, organizing virtually all cellular functions, including survival, motility, differentiation, proliferation, and metabolism. This regulatory function has been largely conserved from the primitive single-cell to the more complex multicellular organisms. More than a third of proteins in eukaryotes are phosphorylated, and essentially every class of protein undergoes regulation by phosphorylation. A decline in the cellular level of CENP-L and CENP-N (components of the constitutive centromere associated network) has earlier been reported and linked to cyclin-dependent kinase (CDK) phosphorylation upon transition into mitosis. Given the importance of posttranslational modifications in cell cycle regulation, mechanistic comprehension of the impact of phosphorylation on both proteins (CENP-L and CENP-N) is of high significance. Through the application of diverse computational analytical techniques, including atomistic molecular dynamics simulations, the mechanism of kinetochore mis-localization and dissociation of the CENP-LN sub-complex in mitosis was delineated. We showed that the phosphorylation of both components of the sub-complex induces global conformational destabilizing effects on the proteins, combined with changes in the electrostatic potential and increase in steric clashes around the protein-protein interaction interface. This, consistent with earlier experimental reports, suggest that the multisite phosphorylation of the CENP-LN sub-complex plays a crucial role in the regulation of cell division. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call