Abstract

Intra-atrial reentrant tachycardia (IART) circuits after Mustard operation remain incompletely understood due to the complex atrial anatomy after extensive surgical procedures. The aim of this study was to delineate IART circuits and their relations to the individual anatomic boundaries in Mustard patients. Twelve patients (10 men and 2 women; age 29 +/- 4.6 years) with atrial tachyarrhythmias after Mustard operation were included in this study. During 14 IARTs and 2 focal atrial tachycardias, electroanatomic mapping and entrainment mapping were performed in both the systemic venous atrium and the pulmonary venous atrium. The latter was accessed via a retrograde transaortic approach. Thirteen IARTs used a single-loop reentrant circuit, and 1 IART used a dual-loop reentrant circuit. Ten (77%) of 13 single-loop reentrant circuits used the tricuspid annulus (TA) as their central barrier. The remaining 3 IARTs rotated around the inferior vena cava (IVC) (n = 2) or ostium of the right upper pulmonary vein (n = 1). In 6 (60%) of the 10 peritricuspid IARTs, both pulmonary venous atrium and systemic venous atrium components of the mid-portion of the TA-IVC isthmus were demonstrated to be part of the reentry. Overall, 12 (86%) of 14 IARTs in 10 patients were successfully ablated by bridging two barriers that constrained the reentrant circuit. Eight (80%) of 10 peritricuspid circuits were abolished by linear ablation connecting the TA to the IVC (n = 4), incisional scar (n = 2), patch (n = 1), and atriotomy (n = 1). In Mustard patients, the TA serves as the most frequent central barrier of IART. Biatrial electroanatomic mapping combined with entrainment mapping facilitates delineation of IART circuits in relation to their anatomic barriers and enables the design of individual ablation strategies to achieve high success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call