Abstract

Hydrochemical research and identification of nitrate contamination are of great significant for the endorheic basin, and the Northern Huangqihai Basin (a typical endorheic basin) was comprehensively researched. The results showed that the main hydrochemical facies were HCO3–Mg·Ca and HCO3–Ca·Mg. Spatial variation coefficients of most indices were greater than 60%, which was probably caused by human activities. The hydrochemical evolution was mainly affected by rock weathering and also by cation exchange. The D–18O relationship of groundwater was δD = 5.93δ18O − 19.18, and the d–excess range was −1.60–+6.01‰, indicating that groundwater was mainly derived from precipitation and that contaminants were very likely to enter groundwater along with precipitation infiltration. The NO3(N) contents in groundwater exceeded the standard. Hydrochemical analyses indicated that precipitation, industrial activities and synthetic NO3 were unlikely to be the main sources of nitrate contamination in the study area. No obvious denitrification occurred in the transformation process of nitrate. The δ15N(NO3) values ranged from +0.29‰ to +14.39‰, and the δ18O(NO3) values ranged from −6.47‰ to +1.24‰. Based on the δ15N(NO3) – δ18O(NO3) dual isotope technique and hydrochemical methods, manure, sewage and NH4 fertilizers were identified to be the main sources of nitrate contamination. This study highlights the effectiveness of the integration of hydrochemical and isotopic data for nitrate source identification, and is significant for fully understanding groundwater hydrochemistry in endorheic basins and scientifically managing and protecting groundwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call