Abstract
14-3-3 proteins belong to a family of conserved molecules expressed in all eukaryotic cells, which play an important role in a multitude of signaling pathways. 14-3-3 proteins bind to phosphoserine/phosphothreonine motifs in a sequence-specific manner. More than 200 14-3-3 binding partners have been found that are involved in cell cycle regulation, apoptosis, stress responses, cell metabolism and malignant transformation. A phosphorylation-independent interaction has been reported to occur between 14-3-3 and a C-terminal domain within exoenzyme S (ExoS), a bacterial ADP-ribosyltransferase toxin from Pseudomonas aeruginosa. In this study, we have investigated the effect of amino acid mutations in this C-terminal domain of ExoS on ADP-ribosyltransferase activity and the 14-3-3 interaction. Our results suggest that leucine-428 of ExoS is the most critical residue for ExoS enzymatic activity, as cytotoxicity analysis reveals that substitution of this leucine significantly weakens the ability of ExoS to mediate cell death. Leucine-428 is also required for the ability of ExoS to modify the eukaryotic endogenous target Ras. Finally, single amino acid substitutions of positions 426-428 reduce the interaction potential of 14-3-3 with ExoS in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.