Abstract

The role for transitional cells as determinants of AH and HA conduction was examined in the superfused rabbit AV junction. Bipolar electrodes and microelectrodes were used to record antegrade A-H and retrograde H-A activation, before and after transection of the transitional cell input to the compact AV node. During pacing from the high right atrium, inferior to the coronary sinus os, beneath the fossa ovalis, or on the anterior limbus, AV Wenckebach block (WB) was mediated by identical transitional cells grouped in close apposition to the compact AV node. Paced WB cycle lengths were shorter from the high right atrium (196+/-12 msec) and inferior to the coronary sinus os (195+/-8 msec) versus the fossa ovalis (217+/-9 msec) or anterior limbus (206+/-11 msec). With His bundle pacing, retrograde HA WB (211+/-17 msec) was observed within the N cell region within the compact AV node. After transection of posterior and superior transitional cell input to the compact AV node, the antegrade AH WB cycle length was prolonged (245+/-18 msec), with an increased WB incidence within the NH region (compact AV node)(5% to 41%; p=0.014). The incidence of retrograde HA WB determined within the NH region was increased (30% to 88%), with a decrease in the stimulus-fast pathway conduction time (98+/-7 to 49+/-6 msec; p<0.01). The data demonstrate (1) a common transitional cell population determining AH WB, independent of atrial stimulation site, and (2) a plasticity of transitional cell-compact AV node connections, with rapid AH and HA conduction favored by removal of posterior/superior AV nodal input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.