Abstract

Insulin-like growth factor (IGF)-binding sites copurifying with human placental insulin receptors during insulin-affinity chromatography consist of two immunologically distinct populations. One reacts with monoclonal antibody alpha IR-3, but not with antibodies to the insulin receptor, and represents Type I IGF receptors; the other reacts only with antibodies to the insulin receptor and is precipitated with a polyclonal receptor antibody (B-10) after labelling with 125I-multiplication-stimulating activity (MSA, rat IGF-II). The latter is a unique sub-population of atypical insulin receptors which differ from classical insulin receptors by their unusually high affinity for MSA (Ka = 2 x 10(9) M-1 compared with 5 x 10(7) M-1) and relative potencies for insulin, MSA and IGF-I (40:5:1 compared with 150:4:1). They represent 10-20% of the total insulin receptor population and account for 25-50% of the 125I-MSA binding activity in Triton-solubilized placental membranes. Although atypical and classical insulin receptors are distinct, their immunological properties are very similar, as are their binding properties in response to dithiothreitol, storage at -20 degrees C and neuraminidase digestion. We conclude that atypical insulin receptors with moderately high affinity for IGFs co-exist with classical insulin receptors and Type I IGF receptors in human placenta. They provide an explanation for the unusual IGF-II binding properties of human placental membranes and may have a specific role in placental growth and/or function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.