Abstract

Multi-temporal high-density terrestrial laser scanning (TLS) datasets are processed to delineating possible movements from terrain surfaces and trees. Terrain surface movements are estimated with the help of segmentation and random sample consensus (RANSAC) algorithm. Tree movements are interpreted by iterative closest point (ICP) solved translations and rotations of tree point clouds. The capabilities of the proposed methodology were tested using a case study of the Slumgullion landslide, where the trees without clear trunks cover the terrain surfaces. The displacements from the terrain surfaces and trees are similar with the results observed using our global positioning system (GPS) and historic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.