Abstract

B-cell precursors (BCP) arise from hematopoietic stem cells in bone marrow (BM). Identification and characterization of the different BCP subsets has contributed to the understanding of normal B-cell development. BCP first rearrange their immunoglobulin (Ig) heavy chain (IGH) genes to form the pre-B-cell receptor (pre-BCR) complex together with surrogate light chains. Appropriate signaling via this pre-BCR complex is followed by rearrangement of the Ig light chain genes, resulting in the formation, and selection of functional BCR molecules. Consecutive production, expression, and functional selection of the pre-BCR and BCR complexes guide the BCP differentiation process that coincides with corresponding immunophenotypic changes. We studied BCP differentiation in human BM samples from healthy controls and patients with a known genetic defect in V(D)J recombination or pre-BCR signaling to unravel normal immunophenotypic changes and to determine the effect of differentiation blocks caused by the specific genetic defects. Accordingly, we designed a 10-color antibody panel to study human BCP development in BM by flow cytometry, which allows identification of classical preB-I, preB-II, and mature B-cells as defined via BCR-related markers with further characterization by additional markers. We observed heterogeneous phenotypes associated with more than one B-cell maturation pathway, particularly for the preB-I and preB-II stages in which V(D)J recombination takes place, with asynchronous marker expression patterns. Next Generation Sequencing of complete IGH gene rearrangements in sorted BCP subsets unraveled their rearrangement status, indicating that BCP differentiation does not follow a single linear pathway. In conclusion, B-cell development in human BM is not a linear process, but a rather complex network of parallel pathways dictated by V(D)J-recombination-driven checkpoints and pre-BCR/BCR mediated-signaling occurring during B-cell production and selection. It can also be described as asynchronous, because precursor B-cells do not differentiate as full population between the different stages, but rather transit as a continuum, which seems influenced (in part) by V-D-J recombination-driven checkpoints.

Highlights

  • B cells arise from hematopoietic stem cells in bone marrow (BM) and develop in a stepwise manner [1, 2]

  • Subsequent IgD expression on the plasma membrane of IgM+ immature B-cell leads to the differentiation into mature naive B-lymphocytes, which are released from BM to peripheral blood (PB)

  • Since IgMD+ cells can be detected in peripheral blood (PB), they were not considered as a formal B-cell precursor (BCP) stage

Read more

Summary

Introduction

B cells arise from hematopoietic stem cells in bone marrow (BM) and develop in a stepwise manner [1, 2]. Since cytoplasmic expression of CD79a (cyCD79a) is one of the first signs of B-cell lineage commitment, human cyCD79a+ CD19- cells are defined as pro-B cells, followed by CD19 expression in pre-B-I cells During this stage, V-D-J recombination of the immunoglobulin (Ig) heavy chain (IGH) locus is initiated by the recombination activating genes (RAG1 and RAG2) [5,6,7,8,9,10,11]. Cells that are in their rearrangement process express TdT in two waves, one during the IGH gene rearrangements and another during the IGL gene rearrangement which ensures junctional diversity by random addition of non-templated nucleotides at the joining sites of the V, D, and J genes Expression of these markers and the different variants of the immunoglobulin (BCR) complex-molecules can be studied with flow-cytometry [15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call