Abstract

Abstract The rich genetic and phenotypic diversity of species complexes is best recognized through formal taxonomic naming, but one must first assess the evolutionary history of phylogeographic lineages to identify and delimit candidate taxa. Using genomic markers, mitochondrial DNA barcoding, and morphometric analyses, we examined lineage diversity and distribution in the Iberian endemic frog Rana parvipalmata. We confirmed two deep phylogeographic lineages, one relatively homogenous genetically, found in Asturias and adjacent areas (T2), and one more fragmented and locally genetically impoverished, restricted to Galicia (T1). Analyses of their hybrid zone suggested a shallow transition characterized by far-ranging admixture, which was modelled by a wide geographic cline (~60 km for the genome average) and no obvious barrier loci (i.e. loci showing disproportionally restricted introgression). The relatively young T1 and T2 have thus remained reproductively compatible, which argues against their distinction as biological species, and we accordingly describe T2 as a new subspecies, Rana parvipalmata asturiensis ssp. nov. Remarkably, we highlight striking discordances between mitochondrial and nuclear distributions across their hybrid zones, as well as between their genetic and morphological differentiation. Our study illustrates how genomic-based phylogeographic frameworks can help decipher the high genetic and phenotypic variation of species complexes and substantiate the taxonomic assessment of candidate lineages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call