Abstract

An important goal of evolutionary and conservation biology is the identification of units below the species level, such as Evolutionarily Significant Units (ESUs), providing objectively delimited units for species conservation and management. In this study we tested the hypothesis that Cuvier’s dwarf caiman (Paleosuchus palpebrosus)—a species broadly distributed across several biomes and watersheds of South America—is comprised of different ESUs. We analyzed mitochondrial cytochrome b sequences of 206 individuals and 532 unlinked ddRAD loci of 20 individuals chosen from amongst the mitochondrial haplogroups. Analysis of the cytochrome b sequences revealed four mitochondrial clusters, while STRUCTURE analysis of ddRAD loci detected three genomic clusters with different levels of mixture between them. Using the Adaptive Evolutionary Conservation (AEC) framework we identified three ESUs: “Amazon”, “Madeira-Bolivia” and “Pantanal”; one of them composed of two different Management Units (MUs), “Madeira” and “Bolivia”. In general, based on the comparisons with other crocodilian species, genetic diversity of each lineage was moderate however, the Madeira MU showed fivefold lower genetic diversity than other geographic groups. Considering the particularities of each Paleosuchus palpebrosus conservation unit, we recommend that the conservation status of each is evaluated separately. Tropical biodiversity is largely underestimated and in this context the broadly distributed species are the most likely candidates to harbor distinct evolutionary lineages. Thus, we suggest that conservation research should not neglect species that are generally considered of Least Concern by IUCN due to the taxon’s broad geographic distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call