Abstract

We present a versatile double imaging particle coincidence spectrometer operating in fully continuous mode, named DELICIOUS III, which combines a velocity map imaging device and a modified Wiley-McLaren time of flight momentum imaging analyzer for photoelectrons and photoions, respectively. The spectrometer is installed in a permanent endstation on the DESIRS vacuum ultraviolet (VUV) beamline at the French National Synchrotron Radiation Facility SOLEIL, and is dedicated to gas phase VUV spectroscopy, photoionization, and molecular dynamics studies. DELICIOUS III is capable of recording mass-selected threshold photoelectron photoion coincidence spectra with a sub-meV resolution, and the addition of a magnifying lens inside the electron drift tube provides a sizeable improvement of the electron threshold/ion mass resolution compromise. In fast electron mode the ultimate kinetic energy resolution has been measured at ΔE/E = 4%. The ion spectrometer offers a mass resolution--full separation of adjacent masses--of 250 amu for moderate extraction fields and the addition of an electrostatic lens in the second acceleration region allows measuring the full 3D velocity vector for a given mass with an ultimate energy resolution of ΔE/E = 15%, without sacrificing the mass resolution. Hence, photoelectron images are correlated both to the mass and to the ion kinetic energy and recoil direction, to access the electron spectroscopy of size-selected species, to study the photodissociation processes of state-selected cations in detail, or to measure in certain cases photoelectron angular distributions in the ion recoil frame. The performances of DELICIOUS III are explored through several examples including the photoionization of N2, NO, and CF3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call