Abstract

Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.

Highlights

  • In the last few years, considerable attention has been focused upon mosquito-borne chikungunya virus (CHIKV); once a relatively obscure member of the Alphavirus genus in the Togaviridae family of enveloped, positive-sense RNA viruses [1–3]

  • In 2005, an East African clade CHIKV strain emerged on the Indian Ocean island of La Reunion that was maintained in a human-mosquitohuman transmission cycle and caused a massive outbreak of CHIK fever [4]

  • The purpose of the current study was to: i) devise an in vitro passage procedure that reliably generates a panel of CHIKV envelope glycoprotein mutations for screening as vaccine candidates; ii) determine the position of the mutations in the three-dimensional structure of the alphavirus spike complex and their effect on electrostatic potential; iii) determine the attenuation characteristics of each mutation in a murine model of CHIKV musculoskeletal disease; and iv) to identify in vitro assays examining the dependency of infection upon heparan sulfate (HS) that correlate with attenuation and localization in the glycoprotein spike

Read more

Summary

Introduction

In the last few years, considerable attention has been focused upon mosquito-borne chikungunya virus (CHIKV); once a relatively obscure member of the Alphavirus genus in the Togaviridae family of enveloped, positive-sense RNA viruses [1–3]. In 2005, an East African clade CHIKV strain emerged on the Indian Ocean island of La Reunion that was maintained in a human-mosquitohuman transmission cycle and caused a massive outbreak of CHIK fever [4]. Spread and/or re-emergence of CHIKV in Indian Ocean areas, Asia, southern Europe, and most recently in the Caribbean, in the following years has resulted in an estimated four to six million cases of CHIK fever with painful, often chronic, arthritides and an ongoing worldwide public health problem [3,5]. The future occurrence of autochthonous cases in the mainland Americas seems inevitable with frequent travel-associated virus introduction, and the likelihood of a resulting outbreak is predicted to be high [6,7]. New strategies are required to develop CHIKV LAVs combining a more refined balance between attenuation and immunogenicity [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.