Abstract

Tumor suppressor pRb represses Skp2, a substrate-recruiting subunit of the SCF(Skp2) ubiquitin ligase. Rb1(+/-) mice incur "two-hit" pituitary tumorigenesis; Skp2(-/-);Rb1(+/-) mice do not. Rb1(-/-) embryos die on embryonic day (E) 14.5-15.5. Here, we report that Skp2(-/-);Rb1(-/-) embryos died on E11.5, establishing an organismal level synthetic lethal relationship between Rb1 and Skp2 On E10.5, Rb1(-/-) placentas showed similarly active proliferation and similarly inactive apoptosis as WT placenta, whereas Rb1(-/-) embryos showed ectopic proliferation without increased apoptosis in the brain. Combining Skp2(-/-) did not reduce proliferation or increase apoptosis in the placentas but induced extensive apoptosis in the brain. We conditionally deleted Rb1 in neuronal lineage with Nes-Cre and reproduced the brain apoptosis in E13.5 Nes-Cre;Rb1(lox/lox);Skp2(-/-) embryos, demonstrating their synthetic lethal relationship at a cell autonomous level. Nes-Cre-mediated Rb1 deletion increased expression of proliferative E2F target genes in the brains of Skp2(+/+) embryos; the increases rose higher with activation of expression of apoptotic E2F target genes in Skp2(-/-) embryos. The brain apoptosis was independent of p53 but coincident with proliferation. The highly activated expression of proliferative and apoptotic E2F target genes subsided with gradually reduced roles of Skp2 in preventing p27 protein accumulation in the brain in late gestation, allowing the embryos to reach full term with normally sized brains. These findings establish that Rb1 and Skp2 deletions are synthetic lethal and suggest how this lethal relationship might be circumvented, which could help design better therapies for pRb-deficient cancer.

Highlights

  • Children who inherit one null allele of the retinoblastoma 1 gene (RB1) are RB1ϩ/Ϫ in all cells and develop retinoblastoma with full penetrance, and the retinoblastoma cells are invariably

  • Whereas combined deletion of pRb repressing targets E2f1 [2], E2f3 [3], and Id2 [8] slowed pituitary tumorigenesis and extended the survival of Rb1ϩ/Ϫ mice by a few months, pituitary of Skp2Ϫ/Ϫ;Rb1ϩ/Ϫ mice were free of oncogenic lesions at 17 months of age when littermate Skp2ϩ/ϩ;Rb1ϩ/Ϫ mice all died of pituitary tumors before 13 months of age

  • Skp2Ϫ/Ϫ;Rb1Ϫ/Ϫ Embryogenesis Is Lethal on E11.5—To define functional relationships between Skp2Ϫ/Ϫ and Rb1Ϫ/Ϫ in embryogenesis, we mated Skp2ϩ/Ϫ;Rb1ϩ/Ϫ mice to combine Skp2Ϫ/Ϫ and Rb1Ϫ/Ϫ in embryogenesis

Read more

Summary

The abbreviations used are

Embryonic day n; IHC, immunohistochemistry; IF, immunofluorescence; PCNA, proliferating cell nuclear antigen; qPCR, quantitative PCR; H&E, hematoxylin and eosin. We determined how Skp, whose deletion more effectively inhibited pituitary tumorigenesis in Rb1ϩ/Ϫ mice than all other pRb repressing targets tested so far, fits into this paradigm

Experimental Procedures
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call