Abstract

Fetal alcohol spectrum disorders (FASD) are associated with social interaction behavior and gastrointestinal (GI) abnormalities. These abnormal behaviors and GI abnormalities overlap with autism spectrum disorder (ASD). We investigated the effect of fetal alcohol exposure (FAE) on social interaction deficits (hallmark of autism) in mice. Evidence indicates that exogenous lipopolysaccharide (LPS) administration during gestation induces autism-like behavior in the offspring. LPS regulates the expression of genes underlying differentiation, immune function, myelination, and synaptogenesis in fetal brain by the LPS receptor, TLR-4-dependent mechanism. In this study, we evaluated the role of TLR-4 in FAE-induced social behavior deficit. WT and TLR4-/- pregnant mice were fed Lieber-DeCarli liquid diet with or without ethanol. The control group was pair-fed with an isocaloric diet. Social behavior was tested in the adult offspring at postnatal day 60. Frontal cortex mRNA expression of autistic candidate genes (Ube3a, Gabrb3, Mecp2) and inflammatory cytokine genes (IL-1β, IL-6, TNF-α) were measured by RT-qPCR. Adult male offspring of ethanol-fed WT dams showed low birth weight compared to offspring of pair-fed WT dams. However, their body weights at adulthood were greater compared to the body weights of offspring of pair-fed WT dams. There were no body weight differences in offspring of TLR4-/- dams. Social interaction deficit was observed only in male offspring of ethanol-fed WT dams, but it was not observed in both male and female offspring of ethanol-fed TLR4-/- dams. Expressions of autism candidate genes, Gabrb3 and Ube3a, were elevated, while that of the Mecp2 gene was suppressed in the frontal cortex of male, but not female, offspring of ethanol-fed WT mice. The expressions of inflammatory cytokine genes, IL-1β, IL-6, and TNF-α, were also significantly increased in the frontal cortex of male, but not female, offspring of ethanol-fed dams. The changes in the expression of autistic and cytokine genes were unaffected in the offspring of ethanol-fed TLR4-/- dams. These data also indicate that TLR4 mediates FAE-induced changes in social interactions and gene expression in brain, suggesting that ethanol-induced LPS absorption from the maternal gut may be involved in gene expression changes in the fetal brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.