Abstract

After loss of intestinal surface area, the remaining bowel undergoes a morphometric and functional adaptive response. Enterocytic expression of the transcriptional coregulator tetradecanoyl phorbol acetate induced sequence 7 (Tis7) is markedly increased in a murine model of intestinal adaptation. Mice overexpressing Tis7 in intestine have greater triglyceride absorption and weight gain when fed a high-fat diet (42% energy) than their wild-type (WT) littermates fed the same diet. These and other data suggest that Tis7 has a unique role in nutrient absorptive and metabolic adaptation. Herein, male Tis7−/− and WT mice were fed a high-fat diet (42% energy) for 8 wk. Weight was monitored and metabolic analyses and hepatic and intestinal lipid concentrations were compared after 8 wk. Intestinal lipid absorption and metabolism studies and intestinal resection surgeries were performed in separate groups of Tis7−/− and WT mice. At 8 wk, weight gain was less and jejunal mucosal and hepatic triglyceride and cholesterol concentrations were lower in Tis7−/− mice than in the WT controls. Following corn oil gavage, serum cholesterol, triglyceride, and FFA concentrations were lower in the Tis7−/− mice than in the WT mice. Incorporation of oral 3[H] triolein into intestinal mucosal cholesterol ester and FFA was less in Tis7−/− compared with WT mice. Following resection, crypt cell proliferation rates and villus heights were lower in Tis7−/− than in WT mice, indicating a blunted adaptive response. Our results suggest a novel physiologic function for Tis7 in the gut as a global regulator of lipid absorption and metabolism and epithelial cell proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.