Abstract

The ability of herpes simplex virus (HSV) to establish lifelong latency in neurons suggests that HSV-derived vectors hold promise for gene delivery to the nervous system. However, vector toxicity and transgene silencing have created significant barriers to vector applications to the brain. Recently, we described a vector defective for all immediate-early gene expression and deleted for the joint region between the two unique genome segments that proved capable of extended transgene expression in non-neuronal cells. Sustained expression required the proximity of boundary elements from the latency locus. As confirmed here, we have also found that a transgene cassette introduced into the ICP4 locus is highly active in neurons but silent in primary fibroblasts. Remarkably, we observed that removal of the virion host shutoff (vhs) gene further improved transgene expression in neurons without inducing expression of viral genes. In rat hippocampus, the vhs-deleted vector showed robust transgene expression exclusively in neurons for at least 1 month without evidence of toxicity or inflammation. This HSV vector design holds promise for gene delivery to the brain, including durable expression of large or complex transgene cassettes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call