Abstract
Several experimental and clinical studies have shown that oxidized low-density lipoprotein and oxidation-sensitive mechanisms are central in the pathogenesis of vascular dysfunction and atherogenesis. Here, we have used p66(Shc-/-) and WT mice to investigate the effects of high-fat diet on both systemic and tissue oxidative stress and the development of early vascular lesions. To date, the p66(Shc-/-) mouse is the unique genetic model of increased resistance to oxidative stress and prolonged life span in mammals. Computer-assisted image analysis revealed that chronic 21% high-fat treatment increased the aortic cumulative early lesion area by approximately 21% in WT mice and only by 3% in p66(Shc-/-) mice. Early lesions from p66(Shc-/-) mice had less content of macrophage-derived foam cells and apoptotic vascular cells, in comparison to the WT. Furthermore, in p66(Shc-/-) mice, but not WT mice, we found a significant reduction of systemic and tissue oxidative stress (assessed by isoprostanes, plasma low-density lipoprotein oxidizability, and the formation of arterial oxidation-specific epitopes). These results support the concept that p66(Shc-/-) may play a pivotal role in controlling systemic oxidative stress and vascular diseases. Therefore, p66(Shc) might represent a molecular target for therapies against vascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.