Abstract
BackgroundMicroorganisms use two-component signal transduction (TCST) systems to regulate the response of the organism to changes of environmental conditions. Such systems are absent from mammalian cells and are thus of interest as drug targets. Fungal TCST systems are usually composed of a hybrid histidine kinase, comprising the histidine kinase (HisKA) domain and a receiver domain, a histidine phosphotransfer protein and a response regulator. Among the 11 groups of fungal histidine kinases, group III histidine kinases are of particular relevance as they are essential for the activity of different groups of fungicides. A characteristic feature is the N-terminal amino acid repeat domain comprising multiple HAMP domains, of which the function is still largely unknown. In Candida albicans, a fungal human pathogen, three histidine kinases were identified, of which CaNik1p is a group III histidine kinase. Heterologous expression of this protein in Sacchromyces cerevisiae conferred susceptibility to different fungicides. Fungicide activity was associated with phosphorylation of the mitogen activated protein kinase Hog1p.ResultsWe have constructed mutated versions of CaNik1p, from which either all HAMP domains were deleted (CaNik1pΔHAMP) or in which the histidine kinase or the receiver domains were not-functional. Expression of CaNIK1ΔHAMP in S. cerevisiae led to severe growth inhibition. Normal growth could be restored by either replacing the phosphate-accepting histidine residue in CaNik1pΔHAMP or by expressing CaNIK1ΔHAMP in S. cerevisiae mutants, in which single genes encoding several components of the HOG pathway were deleted. Expression of proteins with non-functional histidine kinase or receiver domains resulted in complete loss of susceptibility to antifungals, such as fludioxonil. Conditions leading to growth inhibition of transformants also led to phosphorylation of the MAP kinase Hog1p.ConclusionOur results show that functional histidine kinase and receiver domains of CaNik1p were essential for antifungal susceptibility and for activation of the Hog1p. Moreover, for the first time we show that deletion of all HAMP domains from CaNik1p led to activation of Hog1p without an external stimulus. This phenotype was similar to the effects obtained upon treatment with fungicides, as in both cases growth inhibition correlated with Hog1p activation and was dependent on the functionality of the conserved phosphate-accepting histidine residue.
Highlights
Microorganisms use two-component signal transduction (TCST) systems to regulate the response of the organism to changes of environmental conditions
S. cerevisiae was transformed with the plasmids carrying the mutated CaNIK1 genes, and the resultant transformants were treated with the antifungals fludioxonil, iprodione and ambruticin VS3
We previously showed that expression of the group III histidine kinase (HK) from the human fungal pathogen C. albicans, CaNIK1 in S. cerevisiae resulted in susceptibility of the transformants to the fungicides fludioxonil, iprodione and ambruticin VS3 [25]
Summary
Microorganisms use two-component signal transduction (TCST) systems to regulate the response of the organism to changes of environmental conditions. In Candida albicans, a fungal human pathogen, three histidine kinases were identified, of which CaNik1p is a group III histidine kinase. Heterologous expression of this protein in Sacchromyces cerevisiae conferred susceptibility to different fungicides. Several antifungals are available in the market, yet, toxicity and/or development of resistance represent major concerns [5] Among these is the former “gold standard” therapeutic amphotericin B that invariably causes toxicity in patients, negating the importance of its fungicidal activity. Antifungals which impact new targets and have minimal side effects are urgently needed [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.