Abstract
Disruption of endogenous glucocorticoid signalling in bone cells attenuates osteoarthritis (OA) in aged mice, however, the role of endogenous glucocorticoids in chondrocytes is unknown. Here, we investigated whether deletion of the glucocorticoid receptor, specifically in chondrocytes, also alters OA progression. Knee OA was induced by surgical destabilisation of the medial meniscus (DMM) in male 22-week-old tamoxifen-inducible glucocorticoid receptor knockout (chGRKO) mice and their wild-type (WT) littermates (n=7-9/group). Mice were harvested 2, 4, 8 and 16 weeks after surgery to examine the spatiotemporal changes in molecular, cellular, and histological characteristics. At all time points following DMM, cartilage damage was significantly attenuated in chGRKO compared to WT mice. Two weeks after DMM, WT mice exhibited increased chondrocyte and synoviocyte hypoxia inducible factor (HIF)-2α expression resulting in extensive synovial activation characterised by synovial thickening and increased interleukin-1 beta expression. At 2 and 4weeks after DMM, WT mice displayed pronounced chondrocyte senescence and elevated catabolic signalling (reduced Yes-associated protein 1 (YAP1) and increased matrixmetalloprotease [MMP]-13 expression). Contrastingly, at 2 weeks after DMM, HIF-2α expression and synovial activation were much less pronounced in chGRKO than in WT mice. Furthermore, chondrocyte YAP1 and MMP-13 expression, as well as chondrocyte senescence were similar in chGRKO-DMM mice and sham-operated controls. Endogenous glucocorticoid signalling in chondrocytes promotes synovial activation, chondrocyte senescence and cartilage degradation by upregulation of catabolic signalling through HIF-2α in murine posttraumatic OA. These findings indicate that inhibition of glucocorticoid signalling early after injury may present a promising way to slow osteoarthritic cartilage degeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.